OpenAI #FtJob: List Events
Lists status updates for the fine-tuning job. The number of all events and the TSV of all event details can be obtained; created time, event level, event message (up to 20).
Configs for this Auto Step
- AuthzConfU1
- U1: Select HTTP_Authz Setting (Secret API Key as “Fixed Value”) *
- StrConfA1
- A1: Set ID of FtJob *#{EL}
- SelectConfB1
- B1: Select NUMBER of Events (update)
- SelectConfB3
- B3: Select STRING that stores List TSV for Events (update)
- StrConfU2
- U2: Set OpenAI Organization ID (“org-xxxx”)#{EL}
Script (click to open)
// Script Example of Business Process Automation
// for 'engine type: 3' ("GraalJS standard mode")
// cf. 'engine type: 2' ("GraalJS Nashorn compatible mode") (renamed from "GraalJS" at 20230526)
//////// START "main()" /////////////////////////////////////////////////////////////////
main();
function main(){
////// == Config Retrieving / 工程コンフィグの参照 ==
const strAuthzSetting = configs.get( "AuthzConfU1" ); /// REQUIRED
engine.log( " AutomatedTask Config: Authz Setting: " + strAuthzSetting );
const strOrgId = configs.get( "StrConfU2" ); // NotRequired
engine.log( " AutomatedTask Config: OpenAI-Organization: " + strOrgId );
const strJobId = configs.get( "StrConfA1" ); /// REQUIRED (updated 20230822)
if( strJobId === "" ){
throw new Error( "\n AutomatedTask ConfigError:" +
" Config {A1: Job Id} must be non-empty string \n" );
}
const numPocketEvents = configs.getObject( "SelectConfB1" ); // NotRequired
const strPocketEventsTsv = configs.getObject( "SelectConfB3" ); // NotRequired
////// == Data Retrieving / ワークフローデータの参照 ==
// (Nothing. Retrieved via Expression Language in Config Retrieving)
////// == Calculating / 演算 ==
//// OpenAI API > Documentation > API REFERENCE > Fine-tuning > List fine-tuning events
//// https://platform.openai.com/docs/api-reference/fine-tuning/list-events
/// prepare request1
let request1Uri = "https://api.openai.com/v1/fine_tuning/jobs/" + strJobId + "/events";
let request1 = httpClient.begin(); // HttpRequestWrapper
request1 = request1.authSetting( strAuthzSetting ); // with "Authorization: Bearer XX"
if ( strOrgId !== "" ){
request1 = request1.header( "OpenAI-Organization", strOrgId );
}
/// try request1
const response1 = request1.get( request1Uri ); // HttpResponseWrapper
engine.log( " AutomatedTask ApiRequest1 Start: " + request1Uri );
const response1Code = response1.getStatusCode() + ""; // JavaNum to string
const response1Body = response1.getResponseAsString();
engine.log( " AutomatedTask ApiResponse1 Status: " + response1Code );
if( response1Code !== "200"){
throw new Error( "\n AutomatedTask UnexpectedResponseError: " +
response1Code + "\n" + response1Body + "\n" );
}
/* engine.log( response1Body ); // debug
{
"object":"list",
"data":[
{
"object":"fine_tuning.job.event",
"id":"ftevent-cIKDbw3CRLr7IwYsTBEKS2qn",
"created_at":1692846984,
"level":"warn",
"message":"Fine tuning process stopping due to job cancellation",
"data":null,
"type":"message"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-yqPcSyX5qXQ3ouMqWb4XraHR",
"created_at":1692846231,
"level":"info",
"message":"Fine tuning job started",
"data":null,
"type":"message"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-piJrXGJFrAcvRpjgk7f1ozb8",
"created_at":1692846230,
"level":"info",
"message":"Created fine-tune: ftjob-8X0qeoZozDCd9fmRcXLLrk30",
"data":null,
"type":"message"
}
],
"has_more":false
}
v( sanity check case - "train loss" should decrease, "token accuracy" should increase )v
{
"object":"list",
"data":[
{
"object":"fine_tuning.job.event",
"id":"ftevent-6JRdoZOAEP42fRMT4fAat16z",
"created_at":1692775663,
"level":"info",
"message":"Fine-tuning job successfully completed",
"data":null,
"type":"message"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-9o8pLa7zmnzMrpxzYt6D08Ga",
"created_at":1692775661,
"level":"info",
"message":"New fine-tuned model created: ft:gpt-3.5-turbo-0613:questetra::7qcZBkZT",
"data":null,
"type":"message"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-A1JYs6eWQMzB6OYewerUwyqh",
"created_at":1692775657,
"level":"info",
"message":"Step 100: training loss=0.46",
"data":{
"step":100,
"train_loss":0.4633517563343048,
"train_mean_token_accuracy":0.899328887462616
},
"type":"metrics"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-nScwPTux35QHd9xL1oo0bAk0",
"created_at":1692775647,
"level":"info",
"message":"Step 90: training loss=0.92",
"data":{
"step":90,
"train_loss":0.9216997623443604,
"train_mean_token_accuracy":0.7945205569267273
},
"type":"metrics"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-FL47WDAJ0qJYgaZDdzRsJRJi",
"created_at":1692775635,
"level":"info",
"message":"Step 80: training loss=0.87",
"data":{
"step":80,
"train_loss":0.8748041987419128,
"train_mean_token_accuracy":0.7610062956809998
},
"type":"metrics"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-j4j9nB5sJwysnhs10pDiDEJK",
"created_at":1692775623,
"level":"info",
"message":"Step 70: training loss=0.37",
"data":{
"step":70,
"train_loss":0.37020447850227356,
"train_mean_token_accuracy":0.8873239159584045
},
"type":"metrics"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-sDGXzDpDsNeLSNSGqLCnCBLH",
"created_at":1692775613,
"level":"info",
"message":"Step 60: training loss=0.72",
"data":{
"step":60,
"train_loss":0.7190837860107422,
"train_mean_token_accuracy":0.739130437374115
},
"type":"metrics"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-Ulle9AK7kjK6Z3BYBLWRQPi9",
"created_at":1692775601,
"level":"info",
"message":"Step 50: training loss=0.84",
"data":{
"step":50,
"train_loss":0.8407266736030579,
"train_mean_token_accuracy":0.7816091775894165
},
"type":"metrics"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-Cq063vJgvuopfWDGQGgRcPJU",
"created_at":1692775591,
"level":"info",
"message":"Step 40: training loss=0.74",
"data":{
"step":40,
"train_loss":0.7438284158706665,
"train_mean_token_accuracy":0.8324607610702515
},
"type":"metrics"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-QngoPDBAGw8qrX3sv0yJ2xZk",
"created_at":1692775579,
"level":"info",
"message":"Step 30: training loss=1.17",
"data":{
"step":30,
"train_loss":1.170945644378662,
"train_mean_token_accuracy":0.7362204790115356
},
"type":"metrics"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-73ZWTwvIFAG7Wl5TFjaPxrDp",
"created_at":1692775567,
"level":"info",
"message":"Step 20: training loss=1.53",
"data":{
"step":20,
"train_loss":1.5336471796035767,
"train_mean_token_accuracy":0.6594203114509583
},
"type":"metrics"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-adP31yqzjtX08xrjlXLFrBvj",
"created_at":1692775557,
"level":"info",
"message":"Step 10: training loss=1.16",
"data":{
"step":10,
"train_loss":1.155320167541504,
"train_mean_token_accuracy":0.801047146320343
},
"type":"metrics"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-EA8B1acesYMoe1Xyn8NBiPZK",
"created_at":1692775088,
"level":"info",
"message":"Fine tuning job started",
"data":null,
"type":"message"
},{
"object":"fine_tuning.job.event",
"id":"ftevent-NUJYdDjGv0A6wRALH1dYqq3Z",
"created_at":1692775087,
"level":"info",
"message":"Created fine-tune: ftjob-XWe29EU2BqUQSEakRDYUqGVX",
"data":null,
"type":"message"
}
],
"has_more":false
}
*/
/// parse response1
const response1Obj = JSON.parse( response1Body );
let numEvents = response1Obj?.data?.length ?? 0;
let arrEventsData = [];
for ( let i = 0; i < numEvents; i++ ) { // created time, event level, event message. (upto 20)
const dateTmpCreate = new Date ( response1Obj.data[i].created_at * 1000 );
arrEventsData.push (
dateTmpCreate.toISOString() + '\t' +
response1Obj.data[i].level + '\t' +
response1Obj.data[i].message
);
}
////// == Data Updating / ワークフローデータへの代入 ==
if( numPocketEvents !== null ){
engine.setData( numPocketEvents, new java.math.BigDecimal( numEvents ) );
}
if( strPocketEventsTsv !== null ){
engine.setData( strPocketEventsTsv, arrEventsData.join('\n') );
}
} //////// END "main()" /////////////////////////////////////////////////////////////////
/*
Notes:
- This "Automated Step" will list the fine-tuning job events by FtJob ID.
- Example of FtJob ID: "ft-AF1WoRqd3aJAHsqc9NY7iL8F"
- If you place this "Automated Step" in the Workflow diagram, the request will be automatically sent every time the process token arrives.
- A request is automatically sent to the OpenAI API server. (REST API)
- The response from the OpenAI API server is automatically parsed.
APPENDIX
- To activate a Workflow App that includes this Automated Step, "HTTP Authz Setting" is required
- Obtain a "Secret API Key" in advance.
- Set the key as the communication token in "Token Fixed Value"
Notes-ja:
- この[自動工程]は、FtJob ID でファインチューンJob(微調整ジョブ)の詳細イベントをリストします。
- Example of FtJob ID: "ft-AF1WoRqd3aJAHsqc9NY7iL8F"
- この[自動工程]をワークフロー図に配置すれば、案件が到達する度にリクエストが自動送信されます。
- OpenAI API サーバに対してリクエストが自動送出されます。(REST API通信)
- OpenAI API サーバからのレスポンスが自動保存解析されます。
APPENDIX-ja
- この[アドオン自動工程]を含むワークフローアプリを運用するには[HTTP 認証設定]が必要です。
- あらかじめ "Secret API Key" を取得しておいてください。
- "Secret API Key" を通信トークンとしてセットします。[トークン直接指定]
*/
Download
- openai-ftjob-list-events-202308.xml
- 2023-08-24 (C) Questetra, Inc. (MIT License)
(Installing Addon Auto-Steps are available only on the Professional edition.)
Notes
- This Automated Step will list the fine-tuning job events by FtJob ID.
- Example of FtJob ID: “ft-AF1WoRqd3aJAHsqc9NY7iL8F”
- If you place this Automated Step in the Workflow diagram, the request will be automatically sent every time the process token arrives.
- A request is automatically sent to the OpenAI API server. (REST API)
- The response from the OpenAI API server is automatically parsed.
Capture


Appendix
- To activate a Workflow App that includes this Automated Step, “HTTP Authz Setting” is required
- Obtain a “Secret API Key” in advance.
- Set the key as the communication token in “Token Fixed Value”